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Abstract

We use invariance theory to determine the coeﬁic&%ﬁfi’m in the supertrace for the twisted de
Rham complex with absolute boundary conditions.
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1. Introduction

Let (M, g) be a compact Riemannian manifold of dimensiowith smooth, non-empty
boundaryM. Let¢ € C*>° (M) be an auxiliary smooth function called the dilaton. égt=
e ?de’ and letsy , := €?8, 7% be the twisted exterior derivative and the coderivative,
respectively, on the space of smooth differential forms. fi¥istedor WittenLaplacian is
given by

A o= dySp ¢ +8pgdy ON CF(AP(M)).
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This operator appears in the study of quantuform fields interacting with a background
dilaton [13,21]. It has also been used in supersymmetric quantum mech@jiesd in
Morse theory23].

We imposeabsolute boundary condition,, see[12] for details. LetA” 5, be the
associated realization. We need not consider relative boundary condi’tj(axé;s’tﬁe Hodge
* operator intertwines\ , . andA”™_ ” . if M is orientable13]. These boundary con-

. . 15 ~a ¢7 9 .
ditions are motivated by the Hodge—dge Rham theorem which shows

ker(Agﬁg’Ba) = HP(M).

p
The fundamental solution &'¢.¢.5 of the heat equation is an infinitely smoothing operator
which is of trace class. Lef € C*°(M) be a smooth smearing function. Work of Greiner
[14] and Seeley19] shows there is a complete asymptotic expansion:

AP
Trp2(fe tA¢’g’B") ~ Zan,m(ﬁ Ag,g’ Ba)t(n_m)/z ast | 0.

n>0

The heat trace invariants, , (-) are locally computable. Léﬂfm f be thekth covariant
derivative of f with respect to the inward unit norma&), on oM. Let dx and dy be the Rie-
mannian measures @ and ondM, respectively. There exist local invariants,, (x, A(’;, g)

andan,m,k()’a Ag,g’ Ba) SO that

anm(fAD . Ba) = fM F)an m(x, Al ) dx

+ Z/ Vé(m f(Y) . an,m,k(y’ Ag’g, Ba) dy‘
X oM

The interior invariants vanish if is odd; the boundary invariants are generically non-zero
for all n > 1. The presence of the smearing functiptocalizes the problem and permits

the recovery of divergence terms which would otherwise be lost. The presence of terms
involving mef shows the kernel function for the fundamental solution of the heat equation
behaves asymptotically like a distribution near the boundary &s0. Define the local
supertrace heat asymptotiby setting:

a @, () = Y (=Dl anm(x, 47 ),
14

alt (6, ) =Y (=DPapmi(y, A} .. Ba).
p

Let x(M) be the Euler—Poincaré characteristicMf If f = 1 and if¢ satisfies Neumann
boundary conditions, thei 3]:

S (1P Trpa(e  40s80) = x(M).

p
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Equating terms in the asymptotic series yields:

4t d+8 ) x it n=m,
/M m (9, 8)(x) dx+f @y 0(@, () dy = {0 it n % m. 1.1)

The local index density has been computed in this seffi§) Let indicesi, j, ... range
from 1 tom and index a local orthonormal frame for the tangent bundigfolet Rij
be the associated components of the Riemann curvature tensor with the sign conven-
tion that R1221 = +1 on the unit sphereS’2 c R3. Near the boundary, normalize the
choice of the orthonormal frame g, is the inward unit geodesic normal. Let indices
a,b,... range from 1 ton — 1 and index the induced orthonormal frame for the tan-
gent bundle of the boundary. Lét;, be the components of the second fundamental
form.

We adopt the Einstein convention and sum over repeated indices. Let

V.
ey .=g(eu1A~-~/\euM,ev1/\---/\evﬂ)

be the totally anti-symmetric tensor. LiesandJ bem tuples of indices indexing an orthonor-
mal frame forT(M) and letA and B bem — 1 tuples of indices indexing an orthonormal
frame forT(dM). Set

R:

1[ —_ .. . . PR A’t pp—
RJ,s ‘= Rijigyrjoenis - Rigivjijets RB,s ‘= Rayagi1bgiabs -+ Rar_gaibiby_ys

At
L:B,s = Laup, -+ Layp,-

Since the empty product is 1, we sef’ =1, Rgﬁ =1,andCy!l = 1ifr <.

We refer to[13] for the proof of the following result. It estabhshes vanishing theorems
which generalize previous results[@f10,11,18}o the twisted setting. It also identifies the
local index density in the twisted setting.

Theorem 1.1.

(1) Ifnis odd or ifn < m, thenad®?(¢, g) = 0.
(2) If mis odd thena?1?(0, g) = Oforany n
(3) If n — k < m, thena*® (¢, g) = 0.

n,m,k
(4) agﬁtszm(d) g = 1/(7Tm8mn_’l|)8JRI m
(5) al*d (#,8) = 3 1/ (78K (m — 1 — 2k)vol (S~ 1)) e RA Zkgg E'zi+11

m,m,0

The fact that the local index density is not dependent on the dilaton field has impor-
tant physical consequencgk3]. One can also combingq. (1.1)with Theorem 1.1to
obtain a heat equation proof of the Chern—-Gauss—Bonnet thel@&@®infor manifolds
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with boundary:

i 1
K7 = [ e Ri a

1 Ap A2k pA,2m—1
_ RAZ A1,
+ Xk: /aM kS k(2 — 1 — 2k)lvol (S2n—1-2k) “B VB ~B.2k+1 TV

_ 1
M2ty / _
x( ) Xk: on TR8KKL (2 — 2k) ol (§27-2%)

AT A2k pA 20
e5Rp1 L1 Ay

By Theorem 1.1the first non-trivial ‘divergence’ terms can first arise in the supertrace
whenn = m + 1. Let*; and ‘" denote multiple covariant differentiation with respect to the

Levi—Civita connections o and oM, respectively. Byrheorem 1.1af1ﬁ‘sl)m (0,2 =0

if m is even. Furthermore;l;‘glym’k@n g) = 0if k > 2. The following is the main result of
this paper:

Theorem 1.2.

1) ag;’h_iz,zm+1(¢» g = (1/\/571’718’7’@!)85(]5;[1]1735:21_

(2) %), 0@ &) = X (1) /T 8 kvol (§"~Z=2)(m — 2k — 2))ehap Ry2

Lynis+ Y otem_a(1/2y/mak8 kol (§"~%-2)(m — 2k — 2)1)e)

A, 2%k Am—1
{RB,l Ragyy1azis2bisom EB,2k+3}:b2k+l'

(3) a4, 19, 9) = X (/8 kvl (S =2) (m — 2))ed Ry Ly m 7.

Let M be a closed manifold. The local index density for the untwisted de Rham complex
was identified in dimension 2 by McKean and Sinffg] and in arbitrary dimensions by
Atiyah et al.[2], by Gilkey[10], and by Patodi18]. The case of manifolds with boundary
was studied ifil1]. We also refer t¢3,4,17]for other treatments of the local index theorem.

Patodi’'s approach involved a direct calculation analyzing cancellation formulas for the
fundamental solution of the heat equation. Atiyah et al. used invariance theory to identify
the local index density for the twisted signature and twisted spin complexes. They then
expressed the de Rham complex locally in terms of the spin complex twisted by a suitable
coefficient bundle. Neither of these approaches seems particularly well adapted to the twisted
setting. In particular, since the operatiyrrelies on théZ grading of the de Rham complex,
it is not described in terms of an operator on the twisted signature or spin complexes. Thus
we choose if13] to generalize the approach [df0] to determine the local index density
for the twisted de Rham complex.

There are explicit combinatorial formul#,7,15] for the heat trace invariants of order
n < 5, see the discussion $ection 2or further details. However, these formulas become
very complicated and it seems hopeless to piiveorem 1.2y an explicit computation.

The approach taken by Gilkey jh0] suffered from the disadvantage that the techniques
involved were rather ad hoc and cumbersome as they did not make full use of the machinery
of invariance theory developed by We@?2]. In the present paper, we use both the first
and second main theorems of invariance theory; this is the crucial new feature of our
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analysis. Let
o ILm k o ApA2% pAm—1
gm-i—l,m = 8[¢;l’1j1R‘]’27 ‘7:m—1,m = EBRB,l LB,2k+1’
1.k ._ ApA2k A,m—1 2.k . ApA2k Am—1
fm,m = SBRB,;L ¢;a2k+1b2k+1£B,2k+2’ fm,m = SBRB,l ¢§142k+1¢;b2k+1£'3,2k+2’

3k ._ A A, 2k A,m—1
fm,m = 8B{RB,1 Rf12k+1azk+2b2k+2m£B,2k+3}?b2k+1'

Lemma 1.3. There exist universal constants so that

(1) If mis odd thena’,"’, | (¢. ) = cmi1.mEmtLm-

d+6 _ k k
(2) anz+l,m,1(¢’ g) - Zk Cm+l,m,1fm—l,m'
d+s _ i,k ik
(3) @1 0@ &) = ik om0 T mm:

This reduces the proof dfheorem 1.20 the evaluation of the unknown universal co-
efficients. Here is a brief guide to the remainder of the papeseiction 2 we review the
properties of the heat trace invariants which we will needséation 3 we use invariance
theory to establishhemma 1.3 In Section 4 we employ product formulas, special case
calculations, and functorial properties to derive some technical results concerning the uni-
versal coefficients ofemma 1.3 We then combine these results to complete the proof of
Theorem 1.2n Section 5

2. Formulasfor the heat trace asymptotics

Let D be an arbitrary operator of Laplace type on a vector bubdIEhere is a canonical
connection12] V on V which we use to differentiate tensors of all types and a canonical
endomorphisnE of V so that

Du = —(u.ji + Eu).

We impose mixed boundary conditions. Lebe an endomorphism df |y so x2 = 1.

Decomposeq = I1. — I1_ wherellL = (1/2)(ld & x) are the projections on the&1l

eigenspaces of. Let S be an auxiliary endomorphism &1... We extendy and S to be

parallel with respect to the geodesic normal vector figldhearaM. We impose Robin
boundary conditions o, := Rangé&I7,) and Dirichlet boundary conditions dn_ :=

Rangel1_) to define the mixed boundary operator:

B :={I+(Ve, + ) & I_}|m.

Let £2j be the components of the curvature endomorphism defined. bye refer to[6]
for the proof of the following result which expresses the heat trace asymptotics in terms of
this formalism fom < 3:

Lemma?2.l.

(1) ao(f, D, B) = (4m)~"/2 [}, Tr(f Id) dx.
(2) a1(f. D, B) = (4m)=m=D/2(1/4) [,, Tr(fx) dy.
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() ax(£ D, B) = (4n)~™/2(1/6) [,, TH{ f(BE + Ryji ld)}dx + (4m)~"/%(1/6) [;,, Tr
{f(ZLaaId +125) + 3f;mX} dy-

(4) a3(f D, B) = (4m)~"=D/2(1/384) [,,, Tr{ f(96x E+ 16xRiji +8x Ramanrt [1311 —
7IT-]LaaLpb+[21T4 + 10I1_] LapLap + 96Slaa + 19252 — 12x.ax:0) + f;m([617+ +
30I7T_]Laa + 96S) + 24xf.mm} dy.

Similar formulas are availablgs,7,15,20]for n = 4,5. What is crucial to our anal-
ysis, however, is the general form of these expressions. They are the trace of certain
non-commutative polynomials in the covariant derivatives of the varidBIeE, 2, S, L, x}
with indices contracted in pairs.

To applyLemma 2.1to the setting at hand, we must identify the structures which are
involved for the twisted Laplacian. Let: w — e; A w be left exterior multiplication by the
covectore; and leti; be the dual operator, left interior multiplication by Lety; = ¢; — i;
give the associated Clifford module structure on the exterior algebra. Extend the Levi—Civita
connection to act on tensors of all types andgtbe the associated curvature operator.

Lemma?2.2.

(1) Apg=Ag + ¢i¢;i - Id + @ji(eiij — ije).

(2) The Levi—Civita connection is the connection associated Q.

(3) E¢’g = —(1/2)]/,‘)/]‘.{2” — ¢;i¢;i — ¢;ji (e,-ij — ije,-) is the endomorphism fOﬂ(p’g.
(4) Absolute boundary conditions are defined by taking

_[+1 on A@Mm) [ ~Labesia on A@M)
X'_{—l on A(aM)i} and S'_{o on A(aM)L}'

(5) X:a = 2Lab(epim + emip).
Proof. The classical formuld + 8, = ¢;V,, — i;V,; extends to the twisted setting:
dp +8p.¢ = €iVe, +¢i,;i — Ve, + 10,
We use the commutation rules; +i;¢; = djj, the factthaVe = 0, and the fact thati = 0
to prove Assertion (1) by computing:
Apg = Ag+eiVeijdj+1ijbjeiVe, — iV i j — ¢, jiiVe, + (eiij +1je1) i,
= Ag + (eiij +ije —hiej — eji@ Ve, + (el — iiej)diji + i
= Ag + (eiij — ie))diji + ¢,

This shows that the associated connection does not depenaiahhence is the Levi—Civita
connectior{12]. Since the standard Weitzenbdck formulas yigld,) = —(1/2)y;y;$2j,
Assertion (3) follows.

We refer to[6] for the proof of Assertion (4). Letvy (= €1 A --- A €% and let
w_ = €" A wy. We then haveqw+ = +w+. We use Assertion (4) to prove Assertion (5)
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by computing:

(VeaX_Xvea)w—i- = (Fapcetcip + Tabmemis — Tabcecip + Labmemin) w1 =2Labenip04,
Ve, x—xVe)w— = (—Tapcecip—Tamepsim+Tabctciv—Lamepin)o— = 2L apepimo—.

O
We now discuss functorial properties of the supertrace asymptotics.

Lemma?2.3.

(1) Onthe circle gy’ = (1/v/m)¢.11.

(2) We havezd+3<¢ ) = (- M( 6, ().

(3) We havef;, a5’ ,, o(0. 8)dy =

(4) Let(M, ¢, g) := (M1 x M2, ¢1 + ¢2 g1+ g2) whereoM; = ¢. Then
(@) @B, ) = Yy npmn Gty (@1, 81) - ai D (B2, 82),
(b) ad”k(qb 8) = Lytngmn Gimy @1, 81 - ) (D2, 82).

Proof. Asssertion (1) follows fronbemma 2.1(3) and fromLemma 2.23).

Since the interior invariantsﬁj;f@, g) are local, we may suppose without loss of gen-
erality thatM is a closed orientable manifold in the proof of Assertion (2). £ebe the
normalized Hodge operator defined by the metric. Then, the normalizations having taken
into account the sign conventions, the usual intertwining relations extend to the twisted
context to show

Fo=id,  Fedpkg =8_pg  Fgbpgkg =d_y.
Assertion (2) now follows from the intertwining relationship:

FpAy e = Al

We note thatx, intertwines absolute and relative boundary conditions; thus we can not
conclude a similar equivariance property for the boundary invariants.

We useTheorem 1.%o see thatszrlm(o, g) = O regardless of the parity af. As the
interior invariant vanishes pointwise, the boundary integral vanish&gby1.1)

To prove Assertion (4), we decompose

AM) = A(M1) ® A(M>), dy = d1 + dy, 8p.0 = 81+ 82,
where, onC*®° (AP (M1) ® A?(M>)), we have

di=dgp ®1d,  dr:=(=1)"1d ® dy,,

817 =084, ®1d,  82:= (=1)”1d ® 84, 4,
Consequently these operators satisfy the commutation relations:

didy +dody =0,  d182 + 82d1 =0, 81do 4 d281 = 0, 8182+ 8281 = 0.
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Thus the associated Laplacian and fundamental solution of the heat equation decompose in
the form:

P __ Pri P2
Age = Op=prtplp e @A AR AL ),

p an _AP2
e buba = Dp=p1+p2 € Aore ®e A28,
Let f = f1f> wheref; € C*°(M;). We then have
AP _ AP]_ _ APZ
Troa{fe Poste) = Y Trpa{fre Ya) . Trpa{fre st
p=p1+p2

Assertion (4) now follows by equating coefficients in the asymptotic expansion of the
supertrace. O

3. Invariancetheory

Let V be ann dimensional real vector space which is equipped with a positive definite in-
ner produck(-, ). Let O(V) be the associated orthogonal group. One says that a polynomial
map f : x¥V — R is anorthogonal invariantf

f&t . 80 = fot 0 VE€O) and Vi, ..., vf) e xFv.

Weyl's first theorem of invariant22, Theorem 2.9.Ais the following:

Theorem 3.1. Every orthogonal invariant depending on k vectors, . .., v) in xkv is
expressible in terms of the scalar invariantsg(v;, v -

Let Z; ,, be the set of all multilinear invariant maps frort v to R; only the dimension
m of V is really relevant so we suppreBsrom the notation. Given our interest is if©
and not SQV) invariance, we havé; ,, = {0} if k is odd. Consequently, we shall suppose
thatk is even henceforth. LeXy be the group of all permutations of the $&f. . ., k}. We
define a multilinear invariant mapy. » for any permutatiow € X by setting:

Pl,o(V1, ..., V) = 8(Vo(2)s Vo(2) - - 8(WVo(k=1)» Vo(k))-
Theorem 3.2. Ty », = Spancyx, {Pk.o}-

Proof. We useTheorem 3.10 expresyp € 7 ,, in terms of monomials involving the inner
productsg(v;, v;). Sincep is multilinear:

p(Cvy, v2, ..., vx) = CP(v1, V2, ..., Vk).

Consequently, we need only consider monomials where the vatighfgpears exactly once
as otherwise we contradict multilinearity. A similar observation holds for the remaining
indices and these are exactly the expressjansdefined above. O
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In view of Theorem 3.20ne says ‘invariant multilinear maps are given by contractions
of indices’ as, relative to an orthonormal basis, the inner products involved correspond to
contraction of indices in pairs. L¢¢;} be an orthonormal basis for the vector sp&cand
letw = wiyiyipei, ® - -- @ ¢, € V. We have, for example:

Iom = Spare — wii}, Zym = Sparw — wjjj , © — wjjj , © = wijjji }.

Let P, be the space of invariant polynomials which are homogeneous of weight

the derivatives of the metric tensor. Atiyah et[2] applied this formalism to study these
spaces. In geodesic coordinate systems, all jets of the metric can be computed in terms of
the covariant derivatives of the curvature tensor and vice versa. Thus, for examptedif

an invariantP € P4, can be regarded as a map from a certain subspace

W C (QPT(M)} @ (RBT(M))

to R which is invariant under the action of the orthogonal group; heris generated by
the algebraic covariant derivativ8¥ R c ®%7(M) and by the algebraic curvature tensors
R ® R C ®8T(M). As the subspac# is orthogonally invariant, extending to be zero
on W+ defines an orthogonally invariant map to whi€heorem 3.2applies. Thus, for
example, after taking into account the appropriate curvature symmetries, one has

P2.m = Spar{t = Riji },
Pam = Sparit?, |p%| := Rijk Riik, |RI? := Rii Rijd, AT := —Rijji ;i)

This analysis extends to form valued invariants with coefficients in an auxiliary vector
bundle and gives rise to a heat equation proof of the index theorem for the classical elliptic
complexeg2].

What is relevant to our analysis, however, is Weyl's second main thef@2rheorem
2.17.A].

Theorem 3.3. Every relation among scalar products is an algebraic consequence of the
relation

g(v1, w1) glvz, w1) -+ glumy1, w1)
g(v1, wp) gz, w2) -+ glvpg1, w2)
0 = det
g1, wpt1) g2, wiuy1) 0 gUm41, Wint1)

We remark that this relation can also be expressed in the form:
O=g(Wi1 A AUpt1, WL A+ A Wyy). (3.1)

Let W be a vector space of dimensian— 1. Choose an inner product preserving inclusion
i : W C V which embeds O¥) c O(V). We define the restriction map

r. Ik,m — Ik’m,]_
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which is characterized dually by the property:

r(p)(wy, ..., wi) = pli(w), ..., i(wg)).

If pis given by contractions of indices which range from Intpthenr(p) is given by
restricting the range of summation to range from Inte- 1. Consequently, the mapis
surjective. Ifk > 2m and ifo € Xy, define:

@k,m,o(UL CoL V) = g(Uo(l) A AN Vg(m)s Va(m+1) A\ -+ A UJ(Zm))

X 8(Vo(2m+1)> Vo2m+2)) * - 8 Wo(k—1), Vo(k))-

Theorem 3.4. Letm > 2.

Q) r: Zim — Tk m—1 1S surjective
(2) r: Z.m — Zi.m—11s injective ifk < 2m.
(3) If k > 2m, thenker(r) N Zy , = Sparg,e);k{@)k’m,a}.

Proof. We have already verified Assertion (1). To prove Assertion (2), weTls®rem
3.2to expresyp € Iy, in terms of inner products. We u3éeorem 3.3after making an
appropriate dimension shift, to see thégp) vanishes if and only if it can be written as
sums of terms each of which is divisible by an appropriate determihaffisizem x m.
The desired result now follows froiag. (3.1)and from the same arguments used to prove
Theorem 3.2 O

Previously we have considered invariants of the metric alone. The analysis extends easily
to the twisted setting. We define

weightVf¢) =k and weightV¥R) = 2+ k.

Let 9, be the space of all @) invariant polynomials of total weightin the components

of R, the covariant derivatives at, and the covariant derivatives ¢f We do not admit

¢ as a variable. Furthermore, we require that each monomial either does not involve the
covariant derivatives ap at all or involves at least two covariant derivativespofWe use
theZ, actiong — —¢ to decompose

Qum =9}, ®Q,,, whereQy, :={0¢€Qun: 0 g =10(-9¢ 2}
The restriction map imTheorem 3.4nduces natural surjective maps:
riQr, > Q- 1 —0.

If (N, ¢n, gn) are structures in dimensien—1, then we can define corresponding structures
in dimensionn by setting

(M, u, gm) = (N x St ¢y, gn + d62).

If y € dN is the point of evaluation, lety, 1) € aM be the corresponding point of
evaluation—it does not matter which point is chosen on the circle owing to the rotational
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symmetry. The restriction map: Q,.,» — Qn.m—1 is then characterized dually by the
formula:

r(Q)(@n, gn)(y) = O(dn, gn + d6?)(y, D).

Lemma 3.5.

(1) If mis eventhena?’%(¢, g) € Q5 ,, Nkerr.
(2) If mis odd thenad+5(¢ g) € 9, ,, Nkerr.

Proof. Standard argumeni$2] show the invariants?*%(¢, g) are homogeneous of weight

n,m

n inthe jets of the metric and @f. Let V be the Levi—Civita connection atM. By Lemma
2.2(2):

Ap = Ag+ 5viviS2i + it — bijieitj — ije).

Thus the undifferentiated variabfedoes not play a role in these invariants. Furthermore,
either at least two covariant derivativesgpappear or only the curvatueappears in each
Weyl monomial ofa?1?(¢, g). This shows that

a3 (@, g) € Qum.

We useLemma 2.3(2) to see thab;fj;,f@, 2) is an odd function of if m is odd and an
even function of if m is even. To complete the proof, we must shaﬁ{’;f = 0. Suppose
thatM = N x S! has the product metric and that= ¢y is independent of the an-
gular paramete9 e SL. As g = 0, we useLemma 2.3(3) to seea’ (0, gs1) =
(—1)%a?1?(0, g51) = 0 for all n. ThusLemma 2.3(4a) implies thatzd+5(¢M, gn) = 0.

n,m

This shows thata? 1% = 0. O
Assertion (1) ol,emma 1.3will follow from the following result.

Lemma3.6. If mis odd thenQ Nkerr = Spaf&y,+1.m}-

m+1,m

Proof. Let0£ Q € O Let A be a monomial oD of the form:

m+1,m*
A= o, Rigjikrer: - Riyjokoty: 8y

wherea,, andg, denote appropriate collections of indices. Then

m+1=weighti4) = > la] + D2+ B
y v
By definition, the empty sum is 0. ThJs , is to be ignored ifu = 0 and}_, is to be

ignored ifv = 0. Letk be total number of indices presentdn

k= Z lovy.| + Z(4+ |Bv]) = weight(A) + 2v =m + 1+ 2v.
1 v
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We apply Weyl's second main theorem of invariance theory as discussed above. To ensure
thatrQ = 0, we must contracts2 indices inA using thee tensor and then contract the
remaining indices ofi in pairs. Consequently, at leasz2ndices must appear iA so

2n<k=m+14+20=2m+2-Y lay|— > |fl <2m+2. (3.2)
" v

Sincem isodd, 2n, m+1+2v, and 2n+2 are all even. Thus only one of the two inequalities
given in Display(3.2) can be strict. AQ(—¢, g) = —Q(¢, g), u must beodd Thus

PR
yra

so the second inequality Bq. (3.2)is strict. Thus exactly2 = k indices appear i and
all are contracted using tlegensor. The first and second Bianchi identity shw,..3 = 0

if 3 indices are alternated. Thus at most tinndices and at most twgindices can appear
iN @aChR .4, g Variable. This shows that

By =0 forall v.

Furthermore, the two possibilities aRg,;, ,; Or Ri; j4i»j,- The first Bianchi identity can
then be used to express the second variable in terms of the first. Since

u<loa| 4+ 4oy =2

andu is odd,u = 1 and|a1| = 2, since either 0 or at least two covariant derivatives of
¢ appear in each monomial @ € 9, ,,. Thus we are in fact dealing with a multiple of

N 4 Im
Emtim =5 )R )5 U

To complete the proof ofemma 1.3 we study the boundary invariants. Létdenote
the Levi—Civita connection of the boundary. We consider polynomials in the components
of the tensors

{R,VR,V?R,...,L,VL,V?L,...,V$,V?p,...}.
Again, we do not introduce the variahpe We let
weight(VFR) := 2+ k, weight V¥L) :=1+k, and weightV¥¢) = k.

Let Qn,m be the space of all @ — 1) invariant polynomials of total weight where we
admit monomials which either do not involve the covariant derivativesatfall or which
involve at least two covariant derivatives @f

Let 7~?n,,,1 C Qn,m be the subspace of invariants which do not involve the covariant
derivatives ofp. Settingg = 0 defines a natural map fro@n,m to 73,1,,". If Pe 75n,m, then
the evaluatiori(P)(g) € R is defined by setting:

IP(g) = / P(g)(y) dy.
oM
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By Lemma 2.3(3), Jafnflm 0(0, g) = 0. The same argument as that given to establish

Lemma 3.5can be used to show thaf*? € O,__1 Nkerr. The remaining assertions of
Lemma 1.3will now follow from the following result.

Lemma3.7.

(1) OumNkerr={0}ifn <m — 1.

(2) Qm 1m N kerr = Spa[}{]—'m lm}

(3) Q. Nkerr = Spa{F ;5. F i) + (Povm N kerr).
(4) Ppm Nkerr nkerd = Spaq{jrfnfm}_

Proof. Let0O# Q € Qn,m N kerr and letA be a monomial ofD of weightn where:

A= ¢§051 e ¢§au Ril./lklzl;ﬁl T Riv./tvkvev;ﬂvLalbl:Vl T Lawbw:yw’

ni=Y laul+ Y (Bl +2+ > (vl + 1.
I v o

To ensure thatQ = 0, we contract 2z — 1) tangential indices im using thes tensor;

the remaining tangential indices must be contracted in pairs. Since the structure group is
O(@m — 1), the normal indexs:’ can stand alone and unchanged. kebe the total number

of tangential indices i, and letk,, be the total number of times the normal index
appears il. We estimate:

2m =2 <kt <kt +kn =Y leul+ ) (Bl +DH+ Y (ol +2D=n+2v+w
n Y o

=21 =) oyl =Y 1Bl =) Iyl <2n. (3.3)
N v o

Assertion (1) of the lemma follows as this is not possible ¥ m — 1.

We setn = m — 1 to prove Assertion (2). All the inequalities of Displé3,3) must have
been equalities so there are no covariant derivatives and thgs/#mables do not appear.
All the indices are tangential and are contracted usingsttensor. After using the first
Bianchi identity, we see that this leads to the invariafifs , ,, which proves Assertion
(2).

Letn = m. Display(3.3)involves a total increase of 2. Thus at most two explicit covariant
derivatives are present. However, unless at least two covariant derivatives are grésent,
not involved and this leads to invariantsﬁu,m Nkerr. Thus we may suppose exactly two
explicit covariant derivatives are present—and all of them appeat Qonsequently

kr=2m—2 kn=0, > laul=2 Y |A[=0 and Y |y|=0.
" v o

Since every index is tangential and all are contracted using the tersiber applying the

Bianchi identities, we obtain the invarian®&}*,, andF2X . This completes the proof of
Assertion (3).
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To prove Assertion (4), we sét = 0 and consider only metric invariants. L”Néfym be
the space op form valued invariants which are homogeneous of degiie¢he derivatives

of the metric;P,, ,, = 73” m

Lets : 7?,’: PPH . D€ the coderivative of the boundary. Result§ldf] describe the
cohomology groups of this complex. When combined with standard methods of invariance
theory they yield the following observations:

(1) ris a surjective map fror®,, , to P, ,,_, with r§ = 5r.
() Ifn#£m—1, thenf??l, NkerJ = 3751

(3) Ifn#m —1,thenP,_, ,, Nker = 5732

-1
Let Pym € Pum N kerr Nkerd. ChoosePl ;. € P, 4, SO8P; = Pum.

m—1m

UnfortunatelyrP? | need not vanish and we must adji#t _, , . Since
Srpfn_l’m = VSPl_l’m = er’m = 0’

we may choosep —om-1 e Pm 2m—1 S08P om-1= =Pl _ 1.m- Sincer is surjective,

we may choos@?_, , € Pm om SOIPZ_, = Pm 2m_1- Then

S Py — P 5, =8P 1 0 = Pum,
1 1 1 T p2
V{mel,m - 8Pm72,m} = Iﬁl:)m 1m (Srpm 2.m erfl,m SP —2m-1=
Consequently

Pom Nkerr nkerd = 3{7?,1,1_1,”1 N kerr}. (3.4)

LetO#PL |, € 75i1_1 » Nkerrand let

C
A= Rll]lklgl B lv]t kyty; lsvl‘albl')/l T Luwbw:ywe

be a monomial oiiP1 SlncerPl = 0, we must contract@: — 1) indices inA
using thes tensor and contract the remalnlng indices in pairs. We estimate

2m—1) <kt <kt +kn =Y (Bl + D+ (ol +2) +1

=m—-14+2v+w+1
=2m =D =Y 1Bl =D Iyl +1<2m -1 +1
vV o

(3.5)

This sequence of inequalities represents a total increase of 1kfha®(m — 1) and every
tangential index is contracted using thtensor. We have

(3.6)

chcg:cl - Lclcgicg = R616203m~

We may therefore assumg,| = 0 so there are no tangential derivativeslopresent. If
kn» = 0, then every index is contracted using thensor. Thus the Bianchi identities show



P. Gilkey et al./ Journal of Geometry and Physics 49 (2004) 249-271 263

|B,] = 0 for all v. This means that every inequality in Displg8/5)is an equality which is
impossible. Consequently, = 1 and}_, |8,| = 0. This leads to the invariants

_ BpAZk A,m—1 42
gm 1m = €aRB] Ra2k+102k+2mb2k+1£3 2k+3eb

Assertion (4) now follows fronkq. (3.4)sincesgt, ; ,, = —F3,. O

4. Product formulas, special case computations, and functorial properties

Throughout this section, we adopt the notatio_efmma 1.3 We begin with a result
which is based on product formulas.

Lemma4.l.

Q) If m = 2 + 1, thency 1, = (1/ /78 7).

@) Ifk > 0, thenc’,jHlm 1= (/KD yiq i

3) Ifk > 0, thencm+1m0— (/7N 5111 o0

(4) We have:erl mo = (I/¥/m)(1/(m — 2)vol (S"~2)) andcmHm 0=0.

Proof. Give §” andD™ the standard metriggs ,, andgp .. We then have
el R (gsm) =2"@2m)! and e5L5" T (gpm) = (m — DL, (4.1)

Letm = 2m+1. GiveM := St x §2" the product structures whepe = 0. By Theorem 1.1
(1) andLemma 2.34) we have

aflnialym@M, gm) = agja(qbl, gs.1)a2im,2m (0, gs,2m).

Consequently, b¥g. (4.1)and byTheorem 1.X4):
alt L (@.8) = cmi1m®:112" 2m)! = a i ($1. g5.1) - a5 (0. g5.2)
1 1
= =g
We complete the proof of Asssertion (1) by using this relation to solve,f@f ,,:
1
Ot = g il

Fix k > 0. Give M = §% x D"~ the product structures whega = 0. We argue as in
the proof of Assertion (1) to see that:

a1 @ 8) =Y € 1 F @ 8= g 1 125200 =2k — 1))
J

27 (2m)!.

+5
= a5, (0, 85.20) - iy oy 41 2110, 8Dm—20)

kskklzk(zk) i1 (m — 2k — DL,
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This equation relateﬁ‘,ﬂ Lml andc .1 @nd thereby establishes Assertion (2); the proof
of Assertion (3) is S|m|lar

Let M := ST x D"1 where¢ = ¢(0) depends only ors’. We useTheorem 1.1to
determiness,™ | 1 0(0. gp.m-1). Asag;’ = (1/y/7)¢.11, We argue as above to see

Al 0@, = {end s obi11+ a1 o) (m — )
1
d+6(¢ d92) a}[’irl_‘_al,m*l,o(o’ gDm—l): ¢;11

Jr

We solve forcm 1m0 andcfn’f)rl .o [0 establish Assertion (4). O

(m—2)!
vol(§"=2)(m — 2)!"

By Lemma 4.1 we need only determinén)1 m1 andcm 1.m.0 t0 complete the proof
of Theorem 1.2As these terms do not involv;e we setp = 0 henceforth. We introduce
universal constant, , , so that if3 defines mixed boundary conditions for an operator of
Laplace type, then the heat trace asymptotics have the form:

anmi(y. D, B) _cnkar{S" —k— 1}+Enkar{E;mS"_k_4}+~-~

We will use the method of universal examples to show that on{l§’Tr1} is relevant in com-

puting {alt? (0, g), a%t’ ,, 1(0. g)} and that only TtE.,, S =3} is relevant in computing
d+5

am+1,m’0(0, £). This will enable us to show the following lemma.
Lemma4.2.

(1) If m>2, thencm+1 1= E9n+1m
) c430— 0.1f m > 3,thenc>?

, ande? (1/(m — Dlvol (™~ 1).

m,m,0 —

C3
m+1,m,0 — Cm+1,m,0’

Remark. The constantég’m’k andéﬁ‘m’k have been determined [8]; after a bit of work

converting fromI” functions into volumes of spheres one checks the valu'éfqggm 1
given here is consistent with the value giveri5f; this provides a valuable check on our
methodology.

Proof. We shall provd_emma 4.2by making a special case calculation. et> 2. To
simplify the notation, let

Pu(g) =a’t® 10,8,  cwi=c°

m+1,m,1 m+1,m,1>

- ._ =0
Cm .= Cm+1,m,l'

Let (y1, ..., ym—1) be the usual coordinates &1 ~1. Let f(y) be a smooth even function
function of y and let

My = {(y,r) e R" :r > f(y)}.
Let{As,..., A,—1} be distinct real constants. We chogsso that

f(0) =0, (3 H(0) =0, and (ai"a]Y £)0) = A;. (4.2)
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Give R™ the usual flat metric. Thehjj (0) = —A;5j. We useLemma 1.3o compute:
Pp(9)(0) = (m — Dl A, where A= (—1)" 1A1--- Ap_1. (4.3)

Becausek = 0, we haveE = 0 and$2 = 0. Thus there exists a polynomi@l,, of total
weightm — 1 in the tangential covariant derivatives{gf, L, S} so that

Pn =Y (=1)P Tt gp@n){Qm ()}.
p

We must controN* L for k > 1. Since the curvature & vanishesEqg. (3.6)shows that
VL is a totally symmetric tensor field. Singeis an even functiony* L vanishes at the
origin if k is odd. Fork even, the components & L(0) are polynomials in the derivatives
of the defining functionf. Let K denote the ideal in the algebra of all polynomials in the
jets of f which is generated by the monomidlé?, ..., A2 1. In light of Eq. (4.3) we
shall work modulag since such elements can not contributedto

We first studyV2L. This is not a symmetric tensor field. L&tbe the curvature of the
Levi—Civita connection oM. Let{ey, ..., e,,—1} be an orthonormal frame for the tangent
bundle of the boundary so thg{0) = af Then

Rb1b2b3b4 = Lb1b4Lb2b3 - Lblbnglea and

La1a2:a3a4 - La1a2:a4a3 = Ra3a4a1a5La5a2 + Ra3a4a2a5La5a1-

This shows that&&ﬁ5 divides {Ruzasaya5 Lasay + Rasasazas Lasay}(0). ConsequentlyW?L(0)
is totally symmetric modulo the idea. Since the components 8f2L are linear in the
four jets of f and quadratic in the two jets gf, we may choose the four jets gfto kil
tpe symmetrization ofV2L)(0) and thereby ensur@’?L)(0) € K. Similarly, by choosing
V¥+2 £(0) appropriately, we may suppose that

(VKL)(0) e 8 for k> 0.

We therefore supresg® L henceforth in the proof of Assertions (1) and (2).1Bymma 2.2
(5), x:a = 2Lap(epim + emip). Thus further covariant differentiation ¢of only involves
covariantly differentiating,i,, + ¢,ip. Thus inductively there exist suitably chosen endo-
morphisms£, of weight 0, so

Xay—ar = LalhlLazbz Tt Lakhk5h1-~hk~ (44)

If a x.4,... term appears, we must contract it with another indgxEq. (4.4)contains no
Lg,4, term. Consequently this contraction involves a different variable which produces an
Afll term; such terms can be ignored in lighttd. (4.3) Similarly since

S = —Laperia o0n AMR™ Y and S=0 on AR" 1) Adr,

VXS plays no role ifc > 1. If a Lgp, term appears wheie is not to be contracted with
b1, thenA must be divisible by4§l. If the termL 45 appears in a monomid), then we may
factor 0 = LaaQo and then apply-emma 3.7(1) to see the supertrace ¢f vanishes.
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ThusL does not appear as a variable. This shows that only the mongthialis relevant.
Consequently

Pn(@)(0) =G Y _(—=1)P Tt gpm {S™1}(0).
p

Sinces is zero onA? (R™~1) A dr,

Pu()(0) =G Y (=D TI 4pgn-1,{S"1}(0). (4.5)
P

We may decompose

AR H=AR)® - ® AR) and
S = Z d® - -®ld®S;®Id®---®1d, where

1<i<m-1

S;=0 on A%R) and S; = —A; on AL(R).

The supertrace of Id is zero. Furthermore, the supertrace of the tensor product is the product
of the supertraces. Thus orly: — 1)!51 ® - - - ® S,,,_1 survives in the supertrace 8"~ 1.
Since the supertrace 6f is —A;, we have that:

D EDPT ey (S = (m — DIA. (4.6)
P

Assertion (1) part one now follows froiags. (4.3), (4.5) and (4.6)
The invariant), + .0 IS homogeneous of weight — 1 and is in the kernel of. Thus we
can use exactly the same line of argument to show:

alt (0,8)(0) = (m — DIAZ

mmO

We useTheorem 1.%o evaluateru”””S 0(0. £)(0) and establish Assertion (1) part two.
The proof of Assertion (2) is S|m|Iar Let > 3. To simplify the notation, set

. d+s .30 - . =3
Ppt1(g) '=a,\ ,, 00, 8), Cm+1 1= Cpui g o and Cu+1 1= Cp 41 o

Let (u1, u2, y1, ..., ym—3, r) be coordinates oR™. Let f(y) satisfy the normalizations of
Eq. (4.2) We setM = {x e R™ . r > f(y)} and

2
ds?, = du% + e Ao du% + dy% + -+ dy,%,_s + dr?.

ThenR(-)(0) = 0 and the non-vanishing componentdodndV R at the origin are given,
up to the usuali, symmetries, by

L(@3;,3)(0) = —A;8j, and R(d], 33, 35, 31; 8,) = R(3Y, 93, 35, 8,5 9f) = Ao
Let A = (—1)""3ApA1--- A,_3. We applyLemma 1.30 see
Pu11(8)(0) = 2(m — 3)lcy41.A. (4.7)
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We now let& be the ideal generated by the elemdutt§, A%, ..., A2 ). If we setdo = 0,
then the manifold is a product of the manifold considered previously with a flat factor. This
shows thaW* R(0), VK E(0), V¥£2(0) are all divisible byAq for k > 1 and vanish ik = 0.

We consider terms which can give riseAbafter taking the supertrace. LEtdenote a
generic polynomial in the tangential covariant derivativeg pbf S, and ofy whenAg is

setto zero. Since we are not interested in terms which are divisib{% layd sincedg has
weight 3, we factor out a term which can be lineanipto expressP,,+1 symbolically as

Py = Z(—l)p Trar(my Z V¥R Eiﬁfk72 + Z V¥E . g]fl*kfz
r k>1 k>1

+Y VR EL L L+ Y VL gL
k=1 k=2

+Y VS &+ Vg,
k>2 k>3

We setdg = 0 in studying the ‘coefficient’ monomial& Thus the arguments given above
in the proof of Assertion (1) shows only powers$Hére relevant so

Ppt1 = Z(_l)pTrAP(M)
P

x Z VkR . Sm7k72 + Z VkE . Sm7k72 + Z ng . Sm7k72

k>1 k>1 k>1
+ Y VEL st Y ks gkl L N ks (4.8)
k>2 k>2 k>3
By Lemma 3.7
Z(—l)” Traran{S¥} =0 for k <m — 1. (4.9)
p

Thus the terms itv¥ R andV¥ L do not appear ifEq. (4.8)since, being scalars, they could
be moved outside Tr. A® is skew-adjoint and is self-adjoint, this term does not appear.
Terms involvingV* s must be fully contracted and, modulo lower order terms which can
be absorbed at an earlier stage, have the form:

1
S:alalazazmsk = m{SkJrl}:alalazagw + O(Ag)

Thus byEqg. (4.9)such terms do not arise Bq. (4.8) A similar argument can be used to
eliminate the termy;alalazaz...sk from Eq. (4.8)
ExtendsS to be covariant constant along the geodesic normal rays from the boundary. This

permits us to move covariant derivatives outside the trace once again. We_applya 3.7
to see

Z(—l)” Traran{ES} =0 for k <m — 3.
P
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Thus exactly one covariant derivative Bfcan appear andg. (4.8)becomes

Prnt1(2)(0) = Gny1 Y (=DP Tr gpm {E.n S 2)(0).
p

If m =3, then}_ ,(=1)P Tr 43 {E} = 0. This implies

D (DP Tt ppgay Exm) =0
P

and hence,,+1 = 0 as desired.
Suppose thak > 4. SincesS vanishes om (R”~1)+, we have

Prs1(8)(0) = Ent1 ) (=P Tr g1y [ E;m "3,
p

We may decomposd (R"~1) = A(R?) ® A(R"3) to expressE.,, = E® Id andS =
Id ® S. This then leads to the corresponding decomposition of the supertrace:

D DT g prmt{Eon S %)
p

=Y (DT paga (B} Y (=D Tt 1o m-3){8" 73}
a b

The computation performed above shows that the supertraéeéonR” —3is (—1)" 3 (m—
3)!A1--- Ap—3. Adirect calculation of the supertrace Bf,, on R? yields 24¢. The final
assertion of.emma 4.2now follows. O

We continue our study by using the various functorial properties to show the following
lemma.

Lemma4.3.
1) & i = (4”)_('n_1)/2551,1,k
(2) Ifn = 3,thend? | = (1/2)& , 0.

(3) Ifn = 5,thencd (=22 , ..

To prove Assertion (1), we use product formulas. Mt = 771 be the torus and let
D; be the scalar Laplacian. Since the structures are flat,

(4m)~m=D/2 if p =0,

an m—1(x1, D1) = .
nm-1(1, D1) {0 if n>0.

Let(Mz, D2) = ([0, 1], —32). LetM = M1 x MpandD = D1+Da.LetB =V, +Swhere
S is constant and whels, is the inward unit normak,, = 9, whenr = 0 ande,,, = —9,
whenr = 1. An analogous argument to that which was used to estabdisima 2.3(4)
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can be used to establish the following identity from which Assertion (1) follows:

an,m,k(ya D,B) = Z anl,m—l(xla Dy) - anz,l,k(yZa Dy, B)

ni+no=n
= (4m)~ " Y/2, 1 1 (y2, D2, B).
In view of Assertion (1), it suffices to take = 1 in the proof of the remaining assertions.
We use results froff6]. Let M := [0, 1] and letDg := —83. We choosegf so thatf vanishes
identically near = 1 so only the componemnt= 0 whered, is the inward unit normal is
relevant. To prove Assertion (2), we consider a conformal variatipn= %/ Dq. Then
9Sle=0=—3fm and 9:a,(1, Dg)le—o = (1 — n)a(f, Do).

Forn > 3, f.,$"~2 arises from no other term. Thus we may sh‘fﬁ,\ﬁ,o = (1/2)62,170 by
computing:

@%@Da=&fahw“%mﬂ+m
oM

1
= ——(n—l)En,l’()/ f;mSn_zdy-F-'-
2 M

(1 —n)a,(f, Do) = (1 - n)/ fmS" 2y 4+
oM
To prove Assertion (3), we consider a scalar variatigy:= Do — of. We have

8gan(1a DQ)|Q=0 = ay—2(f, Do).

If n > 5, then this is the only way a term invoIvir])ng"“‘ can arise. We shovivjl 0=
a9, 11 by computing:

8Qan(-L DQ)|Q:0 = 88/ Z’S’]_,OE;mSn_4 dy|Q=O + - =ay—2(f Do)
oM
= / &) g1 fmS Ty + -
oM

Remark. Lemma 4.32) failsifn = 2 andLemma 4.33) fails if n = 4 as there are interior
terms which also contribute to the variational formulae.

5. Proof of Theorem 1.2

We useLemmas 4.1-4.8 determine the constantsioéfmma 1.3
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1
C, 1m = —F—= = form=2ﬁ’l+l9
N R ]
ck = —1 P = —1 0
m+1lm,1 — 7Tk8kk| m—2k+1,m—2k,1 — ﬂk8kk' m—2k+1,m—2k,1
1 -0 Zﬁ -0
= angkk|cmfzk+l#"*2k,0 = znk8kklcm72k+1,m72k+1,0
JT

8k kil vol (Sm=2k)(m — 2k)!’
oLk _ ;Cl,o _ 1
mLm0 T pkgk gy mAl=2km=2k0 T kgl vol (S =22y (m — 2k — 2)!”
2.k _ 1 20 _0
Cm+1m,0 = kghpl Sm+1-2km—2k0 = 2
34 _ 1 30 _ o
Cortdm0 = T €430 = 0 for 2k =m — 3,
3k 1 30 1 23
m+1m,0 — ﬂk8kk! m—2k+1,m—2k,0 — 7Tk8kk! m—2k+1,m—2k,0

1 -0 1 -0
=—— ¢ = ———°¢
7Tk8kk| m—2k—1,m—2k,0 Zﬁﬂk8kk' m—2k—1,m—2k—1,0
1 0
= —¢
Zﬁﬂk8kkl m—2k—1,m—2k—1,0

1

= for 2k -3
2Tk GOl (S —25-2) (1m — 2k — 2)! =m
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